Advertisements
Advertisements
Question
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Solution
Let I = `int_0^1 (cos^-1 x^2)*dx`
Put cos–1x = t
∴ x = cos t
∴ dx = – sin t ·dt
When x = 0, t = cos–10 = `pi/(2)`
When x = 1, t = cos–11 = 0
∴ I = `int_(pi/2)^0 t^2*(- sin t)*dt`
= ` -int_(pi/2)^0 t^2sin t *dt`
= `int_0^(pi/2) t^2 sint*dt ...[because int_a^b f(x)*dx = -int_b^a f(x)*dx]`
= `[t^2 int sint*dt]_0^(pi/2) - int_0^(pi/2)[d/dx(t^2) int sint*dt]*dt`
= `[t^2 ( cos t)]_0^(pi/2) - int_0^(pi/2) 2t*(- cos t)*dt`
= `[- t^2cos t]_0^(pi/2) + 2int_0^(pi/2) t*cos t*dt`
= `[ - pi/4 cos pi/2 + 0] + 2{[t int cos t*dt]_0^(pi/2) - int_0^(pi/2)[d/dt (t) int cos t*dt]*dt}`
= `0 + 2{[t sin t]_0^(pi/2) - int_0^(pi/2) 1*sin t*dt} ...[because cos pi/2 = 0]`
= `2[t sin t]_0^(pi/2) - 2[(- cos t)]_0^(pi/2)`
= `2[pi/2 sin pi/2 - 0] - 2[- cos pi/2 + cos 0]`
= `2[pi/2 xx 1] - 2[- 0 + 1]`
= π – 2.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`