English

Evaluate the following : ∫01(cos-1x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`

Sum

Solution

Let I = `int_0^1 (cos^-1 x^2)*dx`

Put cos–1x = t
∴ x = cos t
∴ dx = – sin t ·dt

When x = 0, t = cos–10 = `pi/(2)`

When x = 1, t = cos–11 = 0

∴ I = `int_(pi/2)^0 t^2*(- sin t)*dt`

= ` -int_(pi/2)^0 t^2sin t *dt`

= `int_0^(pi/2) t^2 sint*dt         ...[because int_a^b f(x)*dx = -int_b^a f(x)*dx]`

= `[t^2 int sint*dt]_0^(pi/2) - int_0^(pi/2)[d/dx(t^2) int sint*dt]*dt`

= `[t^2 ( cos t)]_0^(pi/2) - int_0^(pi/2) 2t*(- cos t)*dt`

= `[- t^2cos t]_0^(pi/2) + 2int_0^(pi/2) t*cos t*dt`

= `[ - pi/4 cos  pi/2 + 0] + 2{[t int cos t*dt]_0^(pi/2) - int_0^(pi/2)[d/dt (t) int cos t*dt]*dt}`

= `0 + 2{[t sin t]_0^(pi/2) - int_0^(pi/2) 1*sin t*dt}  ...[because cos  pi/2 = 0]`

= `2[t sin t]_0^(pi/2) - 2[(- cos t)]_0^(pi/2)`

= `2[pi/2 sin  pi/2 - 0] - 2[- cos   pi/2 + cos 0]`

= `2[pi/2 xx 1] - 2[- 0 + 1]`

= π – 2.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.06 | Page 176

RELATED QUESTIONS

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×