Advertisements
Advertisements
Question
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Options
0
1
2
`pi`
Solution
0
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2log x dx`