Advertisements
Advertisements
Question
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Options
True
False
Solution
True
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_0^1 |x| dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3 x^2 logxdx`