English

The principle solutions of the equation cos θ = 12 are ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

The principle solutions of the equation cos θ = `1/2` are ______.

Options

  • `π/6, (5π)/6`

  • `π/3, (5π)/3`

  • `π/6, (7π)/6`

  • `π/3, (2π)/3`

MCQ
Fill in the Blanks

Solution

The principle solutions of the equation cos θ = `1/2` are `bbunderline(π/3, (5π)/3)`.

Explanation:

cos θ = `1/2`

= cos `π/3`

= `cos (2π - π/3)`

= `cos  (5 pi)/3`

∴ Principal solution: `pi/3, (5 pi)/3` ∈ (0. 2π)

∴ `π/3, (5π)/3`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite intergral:

`int _1^3logxdx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×