Advertisements
Advertisements
Question
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Solution
Let I = `int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Let f(x) = `log((2 + sin x)/(2 - sin x))`
∴ f(– x)= `log[(2 + sin (-x))/(2 - sin (-x))]`
= `log((2 - sin x)/(2 + sin x))`
= `-log((2 + sin x)/(2 + sin x))`
= – f(x)
∴ f is an odd function.
∴ `int_((-pi)/2)^(pi/2) f(x) * dx` = 0
∴ `int_((-pi)/2)^(pi/2)log((2 + sin x)/(2 - sin x)) * dx` = 0.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_1^3 x^2 log x dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`