English

Evaluate: ∫0π2cosxsin3x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`

Evaluate

Solution

Let I = `int_0^(pi/2) sqrt(cos x) sin^3x * dx`

= `int_0^(pi/2) sqrt(cosx)sin^2x sinx * dx`

= `int_0^(pi/2) sqrt(cosx)(1 - cos^2x)sinx*dx`
Put cos x = t
∴ – sin x · dx = dt
∴ sin x · dx = – dt
When x = 0, t = cos 0 = 1
When x = π/2, t = cos 2π = 0

`I = - int_1^0 sqrt(t)(1 - t^2)(dt)`

`I = - int_1^0 (t^(1//2) - t^(5//2)) dt`

`I = -[(2t)^(3//2)/3 - (2t)^(7//2)/7]_1^0`

`I = -[0 - (2/3 - 2/7)]`

`I = (14 - 6)/21`

`I = 8/21`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×