English

Evaluate : ∫0π4sin2xsin4x+cos4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

Sum

Solution

Let I = `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`

= `int_0^(pi//4) (2sinx cosx)/(sin^4x + cos^4x)*dx`
Dividing each term by cos4x, we get

I = `int_0^(pi//4) ((2 sinxcancelcosx)/(cos^4x))/((sin^4x)/(cancelcos^4x )+ 1)*dx`

= `int_0^(pi//4) (2sinx/cosx*1/cos^2)/((tan^2x)^2 + 1)*dx`

 = `int_0^(pi//4) (2tanx*sec^2)/ (tan^4 x+ 1)dx`
Put tan2x = t
∴ 2tanx sec2x·dx = dt
When x = 0, t = tan20 = 0

When x = `pi/(4), t = tan^2  pi/(4)` = 1

∴ I = `int_0^1 1/(1 + t^2)*dt`

∴ I = `int_0^1 [tan^-1t]_0^1`

= `[tan^-1 t]_0^1`

= tan–11 – tan–10

= I =  `pi/(4) - 0`

= I =  `pi/(4)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following `int_1^3 x^2log x dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


The principle solutions of the equation cos θ = `1/2` are ______.


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×