Advertisements
Advertisements
Question
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Solution
Let I = `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
= `int_0^(pi//4) (2sinx cosx)/(sin^4x + cos^4x)*dx`
Dividing each term by cos4x, we get
I = `int_0^(pi//4) ((2 sinxcancelcosx)/(cos^4x))/((sin^4x)/(cancelcos^4x )+ 1)*dx`
= `int_0^(pi//4) (2sinx/cosx*1/cos^2)/((tan^2x)^2 + 1)*dx`
= `int_0^(pi//4) (2tanx*sec^2)/ (tan^4 x+ 1)dx`
Put tan2x = t
∴ 2tanx sec2x·dx = dt
When x = 0, t = tan20 = 0
When x = `pi/(4), t = tan^2 pi/(4)` = 1
∴ I = `int_0^1 1/(1 + t^2)*dt`
∴ I = `int_0^1 [tan^-1t]_0^1`
= `[tan^-1 t]_0^1`
= tan–11 – tan–10
= I = `pi/(4) - 0`
= I = `pi/(4)`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
The principle solutions of the equation cos θ = `1/2` are ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`