English

Evaluate : ∫0π4sec2x3tan2x+4tanx+1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`

Sum

Solution

Let I = `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`

Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0

When x = `pi/(4), t = tan  pi/(4)` = 1

∴ I = `int_0^1 dt/(3t^2 + 4t + 1)`

= `(1)/(3) int_0^1 dt/(t^2 + 4/3t + 1/3)`

= `(1)/(3) int_0^1 dt/(t^2 + (4t)/(3) + (4)/(9) - (4)/(9) + (1)/(3)`

= `dt/((t + 2/3)2 - (1/3)^2`

= `(1)/(3)(1)/(2(1/3))[log |(t + 2/3 - 1/3)/(t + 2/3 + 1/3)|]_0^1`

= `(1)/(2)[log ((1 + 1/3)/(1 + 1)) - log((0 + 1/3)/(0 + 1))]`

= `(1)/(2)[log (2/3) - log(1/3)`

= `(1)/(2)log2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×