Advertisements
Advertisements
Question
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Solution
Let `I = int_0^pi x/(1 + sin^2x) * dx` ...(1)
We use the property, `int_0^a f(x) * dx = int_0^a f(a - x) * dx`
Here a = π.
Hence in I, changing x to π – x, we get
`I = int_0^pi (pi - x)/(1 + sin^2(pi - x)) * dx`
= `int_0^pi (pi - x)/(1 + sin^2x) * dx`
= `int_0^pi pi/(1 + sin^2x) * dx - int_0^(pi) x/(1 + sin^2x) * dx`
= `int_0^(pi) pi/(1 + sin^2x) * dx - I` ...[By (1)]
∴ `2I = pi int_0^(pi) 1/(1 + sin^2x) * dx`
Dividing numerator and denominator by cos2x, we get
`2I = pi int_0^(pi) (sec^2x)/(sec^2x + tan^2x) * dx`
= `pi int_0^(pi) (sec^2x)/(1 + 2tan^2x) * dx`
Put tan x = t
∴ sec2x dx = dt
When x = π, t = tan π = 0
When x = 0, t = tan 0 = 0
∴ `2I = pi int_0^(0) dt/(1 + 2t^2) = 0`
∴ I = 0 ...`[because int_a^a f(x) * dx = 0]`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Solve the following.
`int_1^3x^2log x dx`