English

Evaluate the following: ∫0πx1+sin2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`

Evaluate

Solution

Let `I = int_0^pi x/(1 + sin^2x) * dx`                     ...(1)

We use the property, `int_0^a f(x) * dx = int_0^a f(a - x) * dx`

Here a = π.

Hence in I, changing x to π – x, we get

`I = int_0^pi (pi - x)/(1 + sin^2(pi - x)) * dx`

= `int_0^pi (pi - x)/(1 + sin^2x) * dx` 

= `int_0^pi pi/(1 + sin^2x) * dx - int_0^(pi) x/(1 + sin^2x) * dx`

= `int_0^(pi) pi/(1 + sin^2x) * dx - I`    ...[By (1)]

∴ `2I = pi int_0^(pi) 1/(1 + sin^2x) * dx`

Dividing numerator and denominator by cos2x, we get

`2I = pi int_0^(pi) (sec^2x)/(sec^2x + tan^2x) * dx`

= `pi int_0^(pi) (sec^2x)/(1 + 2tan^2x) * dx`

Put tan x = t

∴ sec2x dx = dt

When x = π, t = tan π = 0

When x = 0, t = tan 0 = 0

∴ `2I = pi int_0^(0) dt/(1 + 2t^2) = 0`

∴ I = 0    ...`[because int_a^a f(x) * dx = 0]`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.09 | Page 176

RELATED QUESTIONS

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Solve the following.

`int_1^3 x^2 logx  dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×