Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
उत्तर
Let `I = int_0^pi x/(1 + sin^2x) * dx` ...(1)
We use the property, `int_0^a f(x) * dx = int_0^a f(a - x) * dx`
Here a = π.
Hence in I, changing x to π – x, we get
`I = int_0^pi (pi - x)/(1 + sin^2(pi - x)) * dx`
= `int_0^pi (pi - x)/(1 + sin^2x) * dx`
= `int_0^pi pi/(1 + sin^2x) * dx - int_0^(pi) x/(1 + sin^2x) * dx`
= `int_0^(pi) pi/(1 + sin^2x) * dx - I` ...[By (1)]
∴ `2I = pi int_0^(pi) 1/(1 + sin^2x) * dx`
Dividing numerator and denominator by cos2x, we get
`2I = pi int_0^(pi) (sec^2x)/(sec^2x + tan^2x) * dx`
= `pi int_0^(pi) (sec^2x)/(1 + 2tan^2x) * dx`
Put tan x = t
∴ sec2x dx = dt
When x = π, t = tan π = 0
When x = 0, t = tan 0 = 0
∴ `2I = pi int_0^(0) dt/(1 + 2t^2) = 0`
∴ I = 0 ...`[because int_a^a f(x) * dx = 0]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2log x dx`