मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following: ∫0πx1+sin2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`

मूल्यांकन

उत्तर

Let `I = int_0^pi x/(1 + sin^2x) * dx`                     ...(1)

We use the property, `int_0^a f(x) * dx = int_0^a f(a - x) * dx`

Here a = π.

Hence in I, changing x to π – x, we get

`I = int_0^pi (pi - x)/(1 + sin^2(pi - x)) * dx`

= `int_0^pi (pi - x)/(1 + sin^2x) * dx` 

= `int_0^pi pi/(1 + sin^2x) * dx - int_0^(pi) x/(1 + sin^2x) * dx`

= `int_0^(pi) pi/(1 + sin^2x) * dx - I`    ...[By (1)]

∴ `2I = pi int_0^(pi) 1/(1 + sin^2x) * dx`

Dividing numerator and denominator by cos2x, we get

`2I = pi int_0^(pi) (sec^2x)/(sec^2x + tan^2x) * dx`

= `pi int_0^(pi) (sec^2x)/(1 + 2tan^2x) * dx`

Put tan x = t

∴ sec2x dx = dt

When x = π, t = tan π = 0

When x = 0, t = tan 0 = 0

∴ `2I = pi int_0^(0) dt/(1 + 2t^2) = 0`

∴ I = 0    ...`[because int_a^a f(x) * dx = 0]`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.09 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×