Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
उत्तर
Let I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` ...(i)
= `int_2^7 sqrt(2 + 7 - x)/(sqrt(2 + 7 - x) + sqrt(9 - (2 + 7 - x)))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx + int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx`
= `int_2^7 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x))*dx`
= `int_2^7 1*dx`
= `[x]_2^7`
∴ 2I = 7 – 2 = 5
∴ I = `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.