Advertisements
Advertisements
प्रश्न
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
उत्तर
Let I = `int_4^9 (1)/sqrt(x)*dx`
= `int_4^9x^(1/2)*dx = [(x^(1/2))/(1/2)]_4^9`
= `2[sqrt(x)]_4^9`
= `2(sqrt(9) - sqrt(4))`
= 2 (3 – 2)
∴ I = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`