मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π4sin4xsin3x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`

बेरीज

उत्तर

`int_0^(pi/4) sin 4x sin 3x *dx`

= `(1)/(2) int_0^(pi/4) 2 sin 4x sin 3x *dx`

= `(1)/(2) int_0^(pi/4) [cos (4x - 3x) - cos(4x + 3x)]*dx`

= `(1)/(2) int_0^(pi/4) cos x*dx - (1)/(2) int^(pi/4)cos 7x*dx`

= `(1)/(2)[sinx]_0^(pi/4) - (1)/(2)[(sin7x)/7]_0^(pi/4)`

= `(1)/(2)[sin  pi/4 - sin 0] - (1)/(14)[sin  (7pi)/4 - sin 0]`

= `(1)/(2)[1/sqrt(2) - 0] - (1)/(14)[sin (2pi - pi/4) - 0]`

= `(1)/(2sqrt(2)) - (1)/(14)(- sin  pi/4)`

= `(1)/(2sqrt(2)) + (1)/(14sqrt(2))`

= `(7 + 1)/(14sqrt(2))`

= `(4)/(7sqrt(2))`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×