Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
उत्तर
Let I = `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
= `int_0^1 (1)/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))dx`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x)^2)`dx
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)dx`
= `int_0^1[(1 + x)^(1/2) - x^(1/2)]dx`
= `int_0^1 (1 + x)^(1/2)dx - int_0^1 x^(1/2)dx`
= `[((1 + x)^(1/2))/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `(2)/(3) [(2)^(3/2) - (1)^(3/2)] - (2)/(3) [(1)^(3/2) - 0]`
= `(2)/(3)(2sqrt(2) - 1) - (2)/(3)(1)`
= `(4sqrt(2))/(3) - (2)/(3) - (2)/(3)`
∴ I = `(4)/(3) (sqrt(2) - 1)`
APPEARS IN
संबंधित प्रश्न
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_1^2 x^2*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`