Advertisements
Advertisements
प्रश्न
Solve the following : `int_(-4)^(-1) (1)/x*dx`
उत्तर
Let I = `int_(-4)^(-1) (1)/x*dx`
= `[log |x|]_(-4)^(-1)`
= log | – 1| – log | – 4|
= log 1 – log 4
= 0 – log 4
∴ I = – log 4
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`