मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫04[x2+2x+3]-1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`

बेरीज

उत्तर

Let I = `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`

= `int_0^4 1/sqrt(x^2 + 2x + 1 + 2)*dx`

= `int_0^4 1/sqrt((x + 1)^2 + 2)*dx`

= `[log [x + 1 + sqrt((x + 1)^2 + 2)]_0^4`

= `log[4 + 1 + sqrt(5^2 + 2)] - log[0 + 1 + sqrt(1^2 + 2)]`

= `log(5 + 3sqrt(3)) - log(1 + sqrt(3))`

= `log((5 + 3sqrt(3))/(1 + sqrt(3)))`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.09 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_1^2 x^2*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×