Advertisements
Advertisements
प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
उत्तर
`int_1^9(x + 1)/sqrt(x)*dx = int_1^9(x/sqrt(x) + 1/sqrt(x))*dx`
= `int_1^9 x^(1/2)*dx + int_1^9 x^(-1/2)*dx`
= `[(x^(3/2))/(3/2)]_1^9 + [(x^(1/2))/(1/2)]_1^9`
= `(2)/(3)[9^(3/2) - 1^(3/2)] + 2[9^(1/2) - 1^(1/2)]`
= `(2)/(3)[(3^2)^(3/2) - 1] + 2[3 - 1]]`
= `(2)/(3)[27 - 1] + 4`
= `(52)/(3) + 4`
= `(64)/(3)`.
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2log x dx`
Solve the following.
`int_1^3x^2 logx dx`