Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
उत्तर
Let I = `int_1^2 (x + 3)/(x (x + 2))*dx`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/(x + 2)` ...(i)
∴ x + 3 = A(x + 2) + Bx ...(ii)
Putting x = 0 in (ii), we get
3 = A(0 + 2) + B(0)
∴ 3 = 2A
∴ A = `(3)/(2)`
Putting x = – 2 in (ii), we get
– 2 + 3 = A(–2 + 2) + B(– 2)
∴ 1 = – 2B
∴ B = `(1)/(2)`
From (i), we get
`(x + 3)/(x(x + 2)) = (3)/(2)*(1)/x - (1)/(2(x + 2)`
∴ I = `int_1^2[3/(2x) - (1)/(2(x + 2))]*dx`
= `(3)/(2) int_1^2 (1)/x*dx - (1)/(2) int_1^2 (1)/(x + 2)*dx`
= `(3)/(2)[log|x|]_1^2 - (1)/(2)[log|x + 2|]_1^2`
= `(3)/(2)[log |2| - log|1|] - (1)/(2) [log|2 +2| - log|1 + 2|]`
= `(3)/(2)(log 2 - 0) - (1)/(2)(log4 - log3)`
= `(3)/(2) log2 - (1)/(2)(log 4/3)`
= `(1)/(2)(3log2 - log 4/3)`
= `(1)/(2) log(2^3 xx 3/4)`
= `(1)/(2)log((8 xx 3)/4)`
∴ I = `(1)/(2)log6`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`