Advertisements
Advertisements
प्रश्न
Solve the following:
`int_1^3 x^2 log x*dx`
उत्तर
Let I = `int_1^3 x^2 log x*dx`
= `[log x int x^2*dx]_1^3 - int_1^3 [d/dx (log x) int x^2*dx]*dx`
= `[log x* x^3/3]_1^3 - int_1^3 (1)/x* x^3/(3) *dx`
= `[9 log 3 - log 1* 1/3] - (1)/(3) int_1^3 x^2*dx`
= `[9 log 3 - 0] - (1)/(3)[x^3/3]_1^3`
= `9 log 3 - (1)/(3)(27/3 - 1/3)`
= `9 log 3 - (1)/(3)(26/3)`
∴ I = `9 log 3 - (26)/(9)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_a^b f(x) dx = int_a^b f (t) dt`
Solve the following.
`int_1^3x^2 logx dx`