मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫-π4π4x+π42-cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

बेरीज

उत्तर

Let I = `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

= `int_((-pi)/4)^(pi/4) [x/(2 - cos2x) + (pi/4)/(2 - cos 2x)]`

= `int_((-pi)/4)^(pi/4) x/(2 - cos2x)*dx + pi/(4) int_((-pi)/4)^(pi/4) 1/(2 - cos2x)*dx`

= `"I"_1 + pi/(4)"I"_2`                                       ...(1)

Let f(x) = `x/(2 - cos2x)`

∴ f(– x) = `(-x)/(2 - cos[2(-x)]`

= `(-x)/(2 - cos 2x)`

= – f(x)

∴ f is an odd function

∴ `int_((-pi)/4)^(pi/4) f(x)*dx` = 0

i.e. `int_((-pi)/4)^(pi/4) x/(2 - cos 2x)*dx` = 0, i.e. I1 = 0     ...(2)

In I2, put tan x = t

∴  x = tan–1t

∴ dx = `(1)/(1 + t^2)*dt`
and
cos 2x = `(1 - t^2)/(1 + t^2)`

When x = `- pi/(4), t = tan(- pi/4)` = – 1

When x = `pi/(4), t = tan pi/(4)` = 1.

∴ I2 = `int_(-1)^(1) (1)/(2 - ((1 - t^2)/(1 + t^2)))*(1)/(1 + t^2)*dt`

= `int_(-1)^(1) (1)/(2(1 + t^2) - (1 - t^2))*dt`

= `int_(-1)^(1) (1)/(3t^2 + 1)*dt`

= `int_(-1)^(1) (1)/((sqrt(3) t)^2 + 1)`

= `[1/sqrt(3) tan^-1 ((sqrt(3)t)/1)]_(-1)^(1)`

= `(1)/sqrt(3)[tan^-1 sqrt(3) - tan^-1 (- sqrt(3))]`

= `(1)/sqrt(3)[tan^-1 sqrt(3) + tan^-1 sqrt(3)]`

= `(1)/sqrt(3)[pi/3 + pi/3]`

= `(2pi)/(3sqrt(3)`                                              ...(3)
From (1), (2) and (3), we get

I = `0 + pi/(4)[(2pi)/(3sqrt(3))]`

= `pi^2/(6sqrt(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following:

`int_1^3 x^2 log x*dx`


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_1^3 log x  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Solve the following `int_1^3 x^2log x dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×