Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
उत्तर
Let I = `int_0^pi x*sinx*cos^4x*dx` ...(1)
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`
Here a = π.
Hence changing x by π – x, we get
I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^4*dx`
= `int_0^pi (pi - x)*sinx*cos^4x*dx` ...(2)
Adding(1) and (2), we get
2I = `int_0^pi x*sinx*cos^4x*dx + int_0^pi (pi - x)*sinx*cos^4x*dx`
= `int_0^pi (x + pi - x)*sinx*cos^4x*dx`
= `pi int_0^pi sinx*cos^4x*dx`
∴ I = `pi/(2) int_0^pi cos^4x*sinx*dx`
Put cos = t
∴ – sinx · dx = dt
∴ sinx · dx = – dt
When x 0, t = cos 0 = 1
When x = π cos π = – 1
∴ I = `pi/(2) int_1^(-1) t^4(- dt)`
= `- pi/(2) int_(1)^(-1) t^4*dt`
= `- pi/(2)[(t^5)/5]_1^(-1)`
= `- pi/(10)[t^5]_1^(-1)`
= `- pi/(10)[(- 1)^5 - (1)^5]`
= `- pi/(10) (- 1 - 1)`
= `(2pi)/(10)`
= `pi/(5)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`