मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫0πx⋅sinx⋅cos4x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`

बेरीज

उत्तर

Let I = `int_0^pi x*sinx*cos^4x*dx`              ...(1)

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`

Here a = π.
Hence changing x by π – x, we get

I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^4*dx`

= `int_0^pi (pi - x)*sinx*cos^4x*dx`          ...(2)
Adding(1) and (2), we get

2I = `int_0^pi x*sinx*cos^4x*dx + int_0^pi (pi - x)*sinx*cos^4x*dx`

= `int_0^pi (x + pi - x)*sinx*cos^4x*dx`

= `pi int_0^pi sinx*cos^4x*dx`

∴ I = `pi/(2) int_0^pi cos^4x*sinx*dx`

Put cos = t
∴ – sinx · dx = dt
∴ sinx · dx = – dt
When x  0, t = cos 0 = 1
When x = π cos π = – 1

∴ I = `pi/(2) int_1^(-1) t^4(- dt)`

= `- pi/(2) int_(1)^(-1) t^4*dt`

= `- pi/(2)[(t^5)/5]_1^(-1)`

= `- pi/(10)[t^5]_1^(-1)`

= `- pi/(10)[(- 1)^5 - (1)^5]`

= `- pi/(10) (- 1 - 1)`

= `(2pi)/(10)`

= `pi/(5)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.08 | पृष्ठ १७६

संबंधित प्रश्‍न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x dx `


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×