Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
उत्तर
Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
= `int_0^(1/sqrt(2)) (sin^-1x)/((1 - x^2)sqrt(1 - x^2))*dx`
Put sin–1 x = t
∴ `(1)/sqrt(1 - x^2)*dx` = dt
Also, x = sin t
When x = `(1)/sqrt(2), t = sin^-1 (1/sqrt(2)) = pi/(4)`
When x = 0, t = sin–10 = 0
∴ I = `int_0^(pi/4) t/(1 - sin^2t)*dt`
= `int_0^(pi/4) t/(cos^2t)*dt`
= `int_0^(pi/4) t sec^2t*dt`
= `[t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4)[d/dt (t) int sec^2t*dt]*dt`
= `[t tant]_0^(p/4) - int_0^(pi/4) 1*tant*dt`
= `[pi/4 tan pi/4 - 0] -[log |sect|]_0^(pi/4)`
= `pi/(4) - [log(sec pi/4) - log (sec 0)]`
= `pi/(4) - [log sqrt(2) - log 1]`
= `pi/(4) - (1)/(2)log2`. ...[∵ log 1 = 0]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`