Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^oo xe^-x.dx`
उत्तर
`int_0^∞ xe^-x.dx`
= `[x int e^-x.dx]_0^∞ - int_0^∞[d/dx (x) int e^-x.dx].dx`
= `[x((e^-x)/-1)]_0^∞ - int^∞ 1.(e^-x)/((-1)).dx`
= `[- x.e^x]_0^∞ + int_0^∞ e^-x.dx`
= `[x.e^-x]_0^∞ + [e^-x/-1]_0^∞`
= `[x.e^-x]_0^∞ - [-e^x]_0^∞`
= `[∞.e^-∞-0.e^-0] - [e^-∞-e^-0]`
= `[0 - 0] - [0-1/e^0]`
= `- [0-1/1]`
= 1. ...[∵ e0 = 1, e–x = 0, when x = ∞]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`