Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
उत्तर
`int_0^1 1/sqrt(1 - x^2) "d"x = [sin^-1x]_0^1`
= sin–1(1) – sin–1(0)
= `pi/2 - 0`
= `pi/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.