मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: d∫09xx+9-x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`

बेरीज

उत्तर

Let I = `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9) - x)  "d"x`   ........(i)

= `int_0^9 (sqrt(9 - x))/(sqrt(9 - x) + sqrt(9 - (9 -x)))  "d"x`     ........`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`

∴ I = `int_0^9 (sqrt(9 - x))/(sqrt(9 - x) + sqrt(x))  "d"x`  ......(ii)

Adding (i) and (ii), we get

2I = `int_0^9 (sqrt(x))/(sqrt(x) + sqrt(9 - x))  "d"x + int_0^9  (sqrt(9 - x))/(sqrt(9 - x) + sqrt(x))  "d"x`

= `int_0^9 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x))  "d"x`

= `int_0^9 "d"x`

= `[x]_0^9`

∴ 2I = 9 − 0

∴ I = `9/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers I

संबंधित प्रश्‍न

Evaluate: `int_0^(pi/2) x sin x.dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×