Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
उत्तर
Let I = `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9) - x) "d"x` ........(i)
= `int_0^9 (sqrt(9 - x))/(sqrt(9 - x) + sqrt(9 - (9 -x))) "d"x` ........`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
∴ I = `int_0^9 (sqrt(9 - x))/(sqrt(9 - x) + sqrt(x)) "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^9 (sqrt(x))/(sqrt(x) + sqrt(9 - x)) "d"x + int_0^9 (sqrt(9 - x))/(sqrt(9 - x) + sqrt(x)) "d"x`
= `int_0^9 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x)) "d"x`
= `int_0^9 "d"x`
= `[x]_0^9`
∴ 2I = 9 − 0
∴ I = `9/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`