Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
उत्तर
Let I = `int_0^(pi/4) log(1 + tanx) "d"x` ......(i)
= `int_0^(pi/4) log[1 + tan(pi/4 - x)] "d"x` ......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^(pi/4) log(1 + (tan pi/4 - tan x)/(1 + tan pi/4 * tanx)) "d"x `
= `int_0^(pi/4) log (1 + (1 - tan x)/(1 + tan x)) "d"x`
= `int_0^(pi/4) log ((1 + tanx + 1 - tan x)/(1 + tan x)) "d"x`
= `int_0^(pi/4) log(2/(1 + tan x)) "d"x`
= `int_0^(pi/4)[log2 - log(1 + tanx)] "d"x`
= `log 2 int_0^(pi/4) 1* "d"x - int_0^(pi/4) log(1 + tanx) "d"x`
∴ I = `log 2[x]_0^(pi/4) - "I"` ......[From (i)]
∴ 2I = `log 2(pi/4 - 0)`
∴ I = `pi/8 log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`