हिंदी

Evaluate: ∫0π4log(1+tanx) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`

योग

उत्तर

Let I = `int_0^(pi/4) log(1 + tanx)  "d"x`  ......(i)

= `int_0^(pi/4) log[1 + tan(pi/4 - x)]  "d"x`  ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x]`

= `int_0^(pi/4) log(1 + (tan  pi/4 - tan x)/(1 + tan  pi/4 * tanx)) "d"x `

= `int_0^(pi/4) log (1 + (1 - tan x)/(1 + tan x)) "d"x`

= `int_0^(pi/4) log ((1 + tanx + 1 - tan x)/(1 + tan x))  "d"x`

= `int_0^(pi/4) log(2/(1 + tan x)) "d"x`

= `int_0^(pi/4)[log2 - log(1 + tanx)]  "d"x`

= `log 2 int_0^(pi/4) 1* "d"x - int_0^(pi/4) log(1 + tanx)  "d"x`

∴ I = `log 2[x]_0^(pi/4) - "I"`   ......[From (i)]

∴ 2I = `log 2(pi/4 - 0)`

∴ I = `pi/8 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×