हिंदी

Evaluate: ∫0a1x+a2-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`

योग

उत्तर

Let I = `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`

Put x = a sin θ

∴ dx = a cos θ dθ

When x = 0, θ = 0 and when x = a, θ = `pi/2`

∴ I = `int_0^(pi/2) ("a"costheta "d"theta)/("a"sintheta + sqrt("a"^2 - "a"^2 sin^2 theta))`

= `int_0^(pi/2) ("a"costheta"d"theta)/("a"sintheta + "a"sqrt(1 - sin^2 theta))`

 `int_0^(pi/2) (cos theta)/(sin theta + sqrt(cos^2theta))  "d"theta`

∴ I = `int_0^(pi/2) (costheta)/(sintheta + cos theta)  "d"theta`    .......(i)

∴ I = `int_0^(pi/2) (cos(pi/2 - theta))/(sin(pi/2 - theta) + cos(pi/2 - theta))`     .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`

∴ I = `int_0^(pi/2) (sintheta)/(costheta + sintheta)  "d"theta`     .......(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) (costheta)/(sintheta + costheta)  "d"theta+ int_0^(pi/2) (sin theta)/(cos theta + sin theta)  "d"theta`

= `int_0^(pi/2) (cos theta + sin theta)/(sin theta + cos theta)  "d"theta`

= `int_0^(pi/2) "d"theta - [theta]_0^(pi/2)`

= `pi/2 - 0`

∴ I = `1/2 xx pi/2`

∴ I = `pi/4`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers II

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×