Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
उत्तर
Let I = `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Put x = a sin θ
∴ dx = a cos θ dθ
When x = 0, θ = 0 and when x = a, θ = `pi/2`
∴ I = `int_0^(pi/2) ("a"costheta "d"theta)/("a"sintheta + sqrt("a"^2 - "a"^2 sin^2 theta))`
= `int_0^(pi/2) ("a"costheta"d"theta)/("a"sintheta + "a"sqrt(1 - sin^2 theta))`
`int_0^(pi/2) (cos theta)/(sin theta + sqrt(cos^2theta)) "d"theta`
∴ I = `int_0^(pi/2) (costheta)/(sintheta + cos theta) "d"theta` .......(i)
∴ I = `int_0^(pi/2) (cos(pi/2 - theta))/(sin(pi/2 - theta) + cos(pi/2 - theta))` .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
∴ I = `int_0^(pi/2) (sintheta)/(costheta + sintheta) "d"theta` .......(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) (costheta)/(sintheta + costheta) "d"theta+ int_0^(pi/2) (sin theta)/(cos theta + sin theta) "d"theta`
= `int_0^(pi/2) (cos theta + sin theta)/(sin theta + cos theta) "d"theta`
= `int_0^(pi/2) "d"theta - [theta]_0^(pi/2)`
= `pi/2 - 0`
∴ I = `1/2 xx pi/2`
∴ I = `pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.