हिंदी

Evaluate: ∫-111a2ex+b2e-x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`

योग

उत्तर

Let I = `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`

= `int_(-1)^1 1/("a"^2"e"^x + ("b"^2)/("e"^x))  "d"x`

= `int_(-1)^1 "e"^x/("a"^2("e"^x)^2 + "b"^2)  "d"x`

Put ex = t

∴ ex dx = dt

When x = −1, t = e−1 and when x = 1, t = e

∴ I = `int_("e"^-1)^"e"  "dt"/("a"^2"t"^2 + "b"^2)`

= `1/("a"^2) int_("e"^-1)^"e"  "dt"/("t"^2 + ("b"/"a")^2`

= `1/("a"^2)[1/("b"/"a")tan^-1 ("t"/("b"/"a"))]_("e"^-1)^"e"`

= `1/"ab"[tan^-1("at"/"b")]_("e"^-1)^"e"`

∴ I = `1/"ab"[tan^-1("ae"/"b") - tan^-1("a"/"be")]`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers II

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×