Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
उत्तर
Let I = `int_(-1)^1 |5x - 3| "d"x`
|5x − 3| = − (5x − 3) when (5x − 3) < 0 i.e. x < `3/5`
= 5x – 3 when (5x – 3) > 0 i.e., x > `3/5`
∴ I = `int_(-1)^(3/5) |5x - 3| "d"x + int_(3/5)^1|5x - 3| "d"x`
= `int_(-1)^(3/5) -(5x - 3) "d"x + int_(3/5)^1 (5x - ) "d"x`
= `-5int_(-1)^(3/5)x "d"x + 3int_(-1)^(3/5) "d"x + 5 int_(3/5)^1x "d"x - 3int_(3/5)^1 "d"x`
= `-5/2[x^2/2]_(-1)^(3/5) + 3[x]_(-1)^(3/5) + 5[x^2/2]_(3/5)^1 - 3[x]_(3/5)^1`
= `-5/2[(3/5)^2 - (-1)^2] + 3[3/5 - (-1)] + 5/2[(1)^2 - (3/2)^2] - 3(1 -3/5)`
= `5/2(9/25 - 1) + 3(3/5 + 1) + 5/2(1 - 9/25) - 3(2/5)`
= `-5/2((-16)/25) + 3(8/5) + 5/2(16/25) - 6/5`
= `8/5 + 24/5 + 8/5 - 6/5`
= `34/5`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.