Advertisements
Advertisements
प्रश्न
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
उत्तर
Let I = `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x` .......(i)
= `int_3^8 ([11 - (1 - x)]^2)/((11 - x)^2 + [11 - (11 - x)]2) "d"x` ........`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("a" + "b" - x)"d"x]`
∴ I = `int_3^8 x^2/((11 - x)^2 + x^2) "d"x` .......(ii)
Adding (i) and (ii), we get
2I = `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x + int_3^8 x^2/((11 - x)^2 + x^2) "d"x`
= `int_3^8 ((11 - x)^2 + x^2)/(x^2 + (11 - x)^2) "d"x`
∴ 2I = `int_3^8 1. "d"x`
∴ I= `1/2[x]_3^8`
∴ I = `1/2(8 -3)`
∴ I =`5/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^oo xe^-x.dx`
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`