हिंदी

Evaluate: ∫01log(x+1)x2+1 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`

योग

उत्तर

Let I = `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`

Put x = tan θ

∴ dx = sec2θ dθ

When x = 0, θ = 0 and when x = 1, θ = `pi/4`

∴ I = `int_0^(pi/4)(log(tantheta + 1))/(tan^2theta + 1) xx sec^2theta  "d"theta`

= `int_0^(pi/4) (log(1 + tantheta))/(sec^2theta) xx sec^2theta  "d"theta`

∴ I = `int_0^(pi/4) log(1 + tan theta)  "d"theta`  ......(i)

= `int_0^(pi/4) log[1 + tan(pi/4 - theta)] "d"theta`  ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a"  "f"("a" - x)  "d"x]`

= `int_0^(pi/4) log[1 + (tan  pi/4 - tantheta)/(1 + tan  pi/4 tan theta)] "d"theta`

= `int_0^(pi/4) log[1 + (1 - tan theta)/(1 + tan theta)]  "d"theta`

= `int_0^(pi/4) log[(1 + tan theta + 1 - tan theta)/(1 + tan theta)] "d"theta`

= `int_0^(pi/4) log[2/(1 + tan theta)] "d"theta`

= `int_0^(pi/4) [log2 - log(1 + tan theta)]  "d"theta`

= `log 2 int_0^(pi/4)  "d"theta - int_0^(pi/4) log(1 + tan theta)  "d"theta`

∴ I = `log 2[theta]_0^(pi/4) - "I"`     .....[From (i)]

∴ 2I = `log 2(pi/4 - 0)`

∴ I = `pi/8 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×