Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
उत्तर
Let I = `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Put x = tan θ
∴ dx = sec2θ dθ
When x = 0, θ = 0 and when x = 1, θ = `pi/4`
∴ I = `int_0^(pi/4)(log(tantheta + 1))/(tan^2theta + 1) xx sec^2theta "d"theta`
= `int_0^(pi/4) (log(1 + tantheta))/(sec^2theta) xx sec^2theta "d"theta`
∴ I = `int_0^(pi/4) log(1 + tan theta) "d"theta` ......(i)
= `int_0^(pi/4) log[1 + tan(pi/4 - theta)] "d"theta` ......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^(pi/4) log[1 + (tan pi/4 - tantheta)/(1 + tan pi/4 tan theta)] "d"theta`
= `int_0^(pi/4) log[1 + (1 - tan theta)/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) log[(1 + tan theta + 1 - tan theta)/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) log[2/(1 + tan theta)] "d"theta`
= `int_0^(pi/4) [log2 - log(1 + tan theta)] "d"theta`
= `log 2 int_0^(pi/4) "d"theta - int_0^(pi/4) log(1 + tan theta) "d"theta`
∴ I = `log 2[theta]_0^(pi/4) - "I"` .....[From (i)]
∴ 2I = `log 2(pi/4 - 0)`
∴ I = `pi/8 log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.