हिंदी

Evaluate: ∫0π2sin2x(1+cosx)2dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`

योग

उत्तर

Let I = `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`

Put `tan (x/2)` = t

∴ x = 2tan−1t

∴ dx = `(2"dt")/(1 + "t"^2)`, sin x  `(2"t")/(1 + "t"^2)` and x = `(1 - "t"^2)/(1 + "t"^2)`

When x = 0, t = 0 and when x = `pi/2`, t = 1

∴ I = `int_0^1 ((2"t")/(1 + "t"^2))^2/(1 + (1 - "t"^2)/(1 + "t"^2))^2 * (2"dt")/(1 + "t"^2)`

= `int_0^1 ((4"t"^2)/(1 + "t"^2)^2)/(4/(1 + "t"^2)^2) * (2"dt")/(1 + "t"^2)`

= `2int_0^1 "t"^2/(1 + "t"^2)  "dt"`

= `2int_0^1((1 + "t"^2 - 1)/(1 + "t"^2))  "dt"`

= `2int_0^1(1 + 1/(1 + "t"^2))  "dt"`

= `2["t" - tan^-1"t"]_0^1`

= 2[(1 – tan−11) − (0 − tan−10)]

= `2(1 - pi/4)`

= `(4 - pi)/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers I

संबंधित प्रश्न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×