Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
उत्तर
Let I = `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Put `tan (x/2)` = t
∴ x = 2tan−1t
∴ dx = `(2"dt")/(1 + "t"^2)`, sin x `(2"t")/(1 + "t"^2)` and x = `(1 - "t"^2)/(1 + "t"^2)`
When x = 0, t = 0 and when x = `pi/2`, t = 1
∴ I = `int_0^1 ((2"t")/(1 + "t"^2))^2/(1 + (1 - "t"^2)/(1 + "t"^2))^2 * (2"dt")/(1 + "t"^2)`
= `int_0^1 ((4"t"^2)/(1 + "t"^2)^2)/(4/(1 + "t"^2)^2) * (2"dt")/(1 + "t"^2)`
= `2int_0^1 "t"^2/(1 + "t"^2) "dt"`
= `2int_0^1((1 + "t"^2 - 1)/(1 + "t"^2)) "dt"`
= `2int_0^1(1 + 1/(1 + "t"^2)) "dt"`
= `2["t" - tan^-1"t"]_0^1`
= 2[(1 – tan−11) − (0 − tan−10)]
= `2(1 - pi/4)`
= `(4 - pi)/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.