English

Evaluate: ∫0π2sin2x(1+cosx)2dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`

Sum

Solution

Let I = `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`

Put `tan (x/2)` = t

∴ x = 2tan−1t

∴ dx = `(2"dt")/(1 + "t"^2)`, sin x  `(2"t")/(1 + "t"^2)` and x = `(1 - "t"^2)/(1 + "t"^2)`

When x = 0, t = 0 and when x = `pi/2`, t = 1

∴ I = `int_0^1 ((2"t")/(1 + "t"^2))^2/(1 + (1 - "t"^2)/(1 + "t"^2))^2 * (2"dt")/(1 + "t"^2)`

= `int_0^1 ((4"t"^2)/(1 + "t"^2)^2)/(4/(1 + "t"^2)^2) * (2"dt")/(1 + "t"^2)`

= `2int_0^1 "t"^2/(1 + "t"^2)  "dt"`

= `2int_0^1((1 + "t"^2 - 1)/(1 + "t"^2))  "dt"`

= `2int_0^1(1 + 1/(1 + "t"^2))  "dt"`

= `2["t" - tan^-1"t"]_0^1`

= 2[(1 – tan−11) − (0 − tan−10)]

= `2(1 - pi/4)`

= `(4 - pi)/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers I

RELATED QUESTIONS

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×