Advertisements
Advertisements
Question
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
Options
`(4 - pi)/2`
`(pi - 4)/2`
`4 - pi/(2)`
`(4 + pi)/2`
Solution
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = `bb(underline((4 - pi)/2))`.
Explanation:
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2 = int_0^(pi/2) (1- cos^2x)/(1 + cosx)^2dx`
= `int_0^(pi/2) ((1 + cosx)(1-cosx))/(1 + cosx)^2dx`
= `int_0^(pi/2) (1-cosx)/(1+cosx)dx`
= `int_0^(pi/2) (2sin^2 x/2)/(2cos^2 x/2)dx`
= `int_0^(pi/2)tan^2 x/2dx`
= `int_0^(pi/2) (sec^2 x/2-1)dx`
= `(tan x/2)/(1/2) - x`
= `2[tan x/2-x]_0^(pi/2)`
= `2[tan pi/4-pi/2]`
= `2 - pi/2`
= `(4-pi)/2`
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`