Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Solution
Let I = `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
= `int_0^(pi/4) (cos^2x - sin^2x)/(2cos^2x + 2sinx cosx) "d"x`
= `int_0^(pi/4) ((cosx + sinx)(cosx - sin x))/(2cos(cosx + sinx)) "d"x`
= `1/2 int_0^(pi/4) (cosx - sinx)/cosx "d"x`
= `1/2 int_0^(pi/4) (1 - tan x) "d"x`
= `1/2 int_0^(pi/4) "d"x - 1/2 int_0^(pi/4) tanx "d"x`
= `1/2[x]_0^(pi/4) - 1/2[log|sec x|]_0^(pi/4)`
= `1/2(pi/4 - 0) - 1/2[log|sec pi/4| - log|sec 0|]`
= `pi/8 - 1/2 (log sqrt(2) - log 1)`
= `pi/8 - 1/2 (log sqrt(2) - 0)`
∴ I = `1/2(pi/4 - log sqrt(2))`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`