मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫0π4 cos2x1+cos2x+sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`

बेरीज

उत्तर

Let I = `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`

= `int_0^(pi/4)  (cos^2x - sin^2x)/(2cos^2x + 2sinx cosx)  "d"x`

= `int_0^(pi/4)  ((cosx + sinx)(cosx - sin x))/(2cos(cosx + sinx))  "d"x`

= `1/2 int_0^(pi/4)  (cosx - sinx)/cosx  "d"x`

= `1/2 int_0^(pi/4) (1 - tan x)  "d"x`

= `1/2 int_0^(pi/4)  "d"x - 1/2 int_0^(pi/4) tanx  "d"x`

= `1/2[x]_0^(pi/4) - 1/2[log|sec x|]_0^(pi/4)`

= `1/2(pi/4 - 0) - 1/2[log|sec  pi/4| - log|sec 0|]`

= `pi/8 - 1/2 (log sqrt(2) - log 1)`

= `pi/8 - 1/2 (log sqrt(2) - 0)`

∴ I = `1/2(pi/4 - log sqrt(2))`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Long Answers III

संबंधित प्रश्‍न

Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×