Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
उत्तर
Let I = `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
= `int_0^(pi/4) (cos^2x - sin^2x)/(2cos^2x + 2sinx cosx) "d"x`
= `int_0^(pi/4) ((cosx + sinx)(cosx - sin x))/(2cos(cosx + sinx)) "d"x`
= `1/2 int_0^(pi/4) (cosx - sinx)/cosx "d"x`
= `1/2 int_0^(pi/4) (1 - tan x) "d"x`
= `1/2 int_0^(pi/4) "d"x - 1/2 int_0^(pi/4) tanx "d"x`
= `1/2[x]_0^(pi/4) - 1/2[log|sec x|]_0^(pi/4)`
= `1/2(pi/4 - 0) - 1/2[log|sec pi/4| - log|sec 0|]`
= `pi/8 - 1/2 (log sqrt(2) - log 1)`
= `pi/8 - 1/2 (log sqrt(2) - 0)`
∴ I = `1/2(pi/4 - log sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`