Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
उत्तर
Let I = `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Put sin x = t
∴ cos x dx = dt
When x = 0, t = 0 and when x = `pi/2`, t = 1
∴ I = `int_0^1 "dt"/((1 + "t")(2 + "t"))`
Let `1/((1 + "t")(2 + "t")) = "A"/(1 + "t") + "B"/(2 + "t")` ........(i)
∴ 1 = A(2 + t) + B(1 + t) ........(ii)
Putting t = −1 in (ii), we get
A = 1
Putting t = −2 in (ii), we get
1 = − B
∴ B = −1
From (i), we get
`1/((1 + "t")(2 + "t")) = 1/(1 + "t") - 1/(2 + "t")`
∴ I = `int_0^1(1/(1 + "t") - 1/(2 + "t")) "dt"`
= `int_0^1 1/(1 + "t") "dt" - int_0^1 1/(2 + 1) "dt"`
= `[log|1 + "t"|]_0^1 - [log|2 + "t"|]_0^1`
= (log 2 − log 1) − (log 3 − log 2)
= `log 2 - 0 - log(3/2)`
= `log(2 xx 2/3)`
∴ I = `log(4/3)`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`