हिंदी

Evaluate: ∫0π2cosx(1+sinx)(2+sinx) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`

योग

उत्तर

Let I = `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`

Put sin x = t

∴ cos x dx = dt

When x = 0, t = 0 and when x = `pi/2`, t = 1

∴ I = `int_0^1 "dt"/((1 + "t")(2 + "t"))`

Let `1/((1 + "t")(2 + "t")) = "A"/(1 + "t") + "B"/(2 + "t")` ........(i)

∴ 1 = A(2 + t) + B(1 + t)  ........(ii)

Putting t = −1 in (ii), we get

A = 1

Putting t = −2 in (ii), we get

1 = − B

∴ B = −1

 From (i), we get

`1/((1 + "t")(2 + "t")) = 1/(1 + "t") - 1/(2 + "t")`

∴ I = `int_0^1(1/(1 + "t") - 1/(2 + "t")) "dt"`

= `int_0^1 1/(1 + "t")  "dt" - int_0^1 1/(2 + 1)  "dt"`

= `[log|1 + "t"|]_0^1 - [log|2 + "t"|]_0^1`

= (log 2 − log 1) − (log 3 − log 2)

= `log 2 - 0 - log(3/2)`

= `log(2 xx 2/3)`

∴ I = `log(4/3)`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers II

संबंधित प्रश्न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×