हिंदी

Evaluate: ∫01x⋅tan-1x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^1 x* tan^-1x  "d"x`

योग

उत्तर

Let I = `int_0^1 x tan^-1x  "d"x`

= `[tan^-1 x int x  "d"x]_0^1 - int_0^1["d"/("d"x)(tan^-1x) int x  "d"x]"d"x`

= `[tan^-1x* x^2/2]_0^1 -int_0^1 1/(1 + x^2)*x^2/2  "d"x`

= `[x^2/2 tan^-1x]_0^1 - 1/2 int_0^1 x^2/(1 + x^2)  "d"x`

= `[1/2 tan^-1 - 0] - 1/2 int (x^2 + 1 - 1)/(1 + x^2)  "d"x`

= `1/2* pi/4 - 1/2 int_0^1 (1 - 1/(1 + x^2)) "d"x`

= `pi/8 - 1/2[x - tan^-1x]_0^1`

= `pi/8 - 1/2[(1 - tan^-1 1) - (0 - tan^-1 0)]`

= `pi/8 - 1/2(1 - pi/4 - 0)`

= `pi/8 - 1/2 + pi/8`

∴ I = `pi/4 - 1/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Short Answers II

संबंधित प्रश्न

Evaluate: `int_0^oo xe^-x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×