Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 x* tan^-1x "d"x`
उत्तर
Let I = `int_0^1 x tan^-1x "d"x`
= `[tan^-1 x int x "d"x]_0^1 - int_0^1["d"/("d"x)(tan^-1x) int x "d"x]"d"x`
= `[tan^-1x* x^2/2]_0^1 -int_0^1 1/(1 + x^2)*x^2/2 "d"x`
= `[x^2/2 tan^-1x]_0^1 - 1/2 int_0^1 x^2/(1 + x^2) "d"x`
= `[1/2 tan^-1 - 0] - 1/2 int (x^2 + 1 - 1)/(1 + x^2) "d"x`
= `1/2* pi/4 - 1/2 int_0^1 (1 - 1/(1 + x^2)) "d"x`
= `pi/8 - 1/2[x - tan^-1x]_0^1`
= `pi/8 - 1/2[(1 - tan^-1 1) - (0 - tan^-1 0)]`
= `pi/8 - 1/2(1 - pi/4 - 0)`
= `pi/8 - 1/2 + pi/8`
∴ I = `pi/4 - 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^oo xe^-x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`