Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
उत्तर
Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Put sin−1x = t
∴ x = sin t
∴ dx = cos t dt
When x = 0, t = 0 and when x = `1/sqrt(2)`, t = `pi/4`
∴ I = `int_0^(pi/4) "t"/(1 - sin^2"t")^(3/2) xx cos "t" "dt"`
= `int_0^(pi/4) "t"/(cot^2 "t")^(3/2) xx cos "t" "dt"`
= `int_0^(pi/4) "t" sec^2 "t" "dt"`
= `["t" int sec^2 "t" "dt"]_0^(pi/4) - int_0^(pi/4)["d"/("dt") ("t") int sec^2 "t" "dt"]"dt"`
= `["t"*tan "t"]_0^(pi/4) - int_0^(pi/4)1* tan "t" "dt"`
= `(pi/4* tan pi/4 - 0) - [log|sec "t"|]_0^(pi/4)`
= `pi/4(1) - [log|sec pi/4| -log|sec 0|]`
= `p/4 - (log sqrt(2) - log 1)`
= `pi/4 - (log 2^(1/2) - 0)`
∴ I = `pi/4 - 1/2 log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.