Advertisements
Advertisements
Question
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Solution
Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Put sin−1x = t
∴ x = sin t
∴ dx = cos t dt
When x = 0, t = 0 and when x = `1/sqrt(2)`, t = `pi/4`
∴ I = `int_0^(pi/4) "t"/(1 - sin^2"t")^(3/2) xx cos "t" "dt"`
= `int_0^(pi/4) "t"/(cot^2 "t")^(3/2) xx cos "t" "dt"`
= `int_0^(pi/4) "t" sec^2 "t" "dt"`
= `["t" int sec^2 "t" "dt"]_0^(pi/4) - int_0^(pi/4)["d"/("dt") ("t") int sec^2 "t" "dt"]"dt"`
= `["t"*tan "t"]_0^(pi/4) - int_0^(pi/4)1* tan "t" "dt"`
= `(pi/4* tan pi/4 - 0) - [log|sec "t"|]_0^(pi/4)`
= `pi/4(1) - [log|sec pi/4| -log|sec 0|]`
= `p/4 - (log sqrt(2) - log 1)`
= `pi/4 - (log 2^(1/2) - 0)`
∴ I = `pi/4 - 1/2 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
`int_0^1 x^2/(1 + x^2)dx` = ______.
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.