English

Evaluate: ∫012sin-1x(1-x2)32 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`

Sum

Solution

Let I = `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`

Put sin−1x = t

∴ x = sin t

∴ dx = cos t dt

When x = 0, t = 0 and when x = `1/sqrt(2)`, t = `pi/4`

∴ I = `int_0^(pi/4) "t"/(1 - sin^2"t")^(3/2) xx cos "t"  "dt"`

= `int_0^(pi/4) "t"/(cot^2 "t")^(3/2) xx cos "t"  "dt"`

= `int_0^(pi/4) "t" sec^2 "t"  "dt"`

= `["t" int sec^2 "t"  "dt"]_0^(pi/4) - int_0^(pi/4)["d"/("dt") ("t") int sec^2 "t"  "dt"]"dt"`

= `["t"*tan "t"]_0^(pi/4) - int_0^(pi/4)1* tan "t"  "dt"`

= `(pi/4* tan  pi/4 - 0) - [log|sec "t"|]_0^(pi/4)`

= `pi/4(1) - [log|sec  pi/4| -log|sec 0|]`

= `p/4 - (log sqrt(2) - log 1)`

= `pi/4 - (log 2^(1/2) - 0)`

∴ I = `pi/4 - 1/2 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


`int_0^1 x^2/(1 + x^2)dx` = ______.


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×