English

Evaluate: ∫0a1x+a2-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`

Sum

Solution

Let I = `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`

Put x = a sin θ

∴ dx = a cos θ dθ

When x = 0, θ = 0 and when x = a, θ = `pi/2`

∴ I = `int_0^(pi/2) ("a"costheta "d"theta)/("a"sintheta + sqrt("a"^2 - "a"^2 sin^2 theta))`

= `int_0^(pi/2) ("a"costheta"d"theta)/("a"sintheta + "a"sqrt(1 - sin^2 theta))`

 `int_0^(pi/2) (cos theta)/(sin theta + sqrt(cos^2theta))  "d"theta`

∴ I = `int_0^(pi/2) (costheta)/(sintheta + cos theta)  "d"theta`    .......(i)

∴ I = `int_0^(pi/2) (cos(pi/2 - theta))/(sin(pi/2 - theta) + cos(pi/2 - theta))`     .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`

∴ I = `int_0^(pi/2) (sintheta)/(costheta + sintheta)  "d"theta`     .......(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) (costheta)/(sintheta + costheta)  "d"theta+ int_0^(pi/2) (sin theta)/(cos theta + sin theta)  "d"theta`

= `int_0^(pi/2) (cos theta + sin theta)/(sin theta + cos theta)  "d"theta`

= `int_0^(pi/2) "d"theta - [theta]_0^(pi/2)`

= `pi/2 - 0`

∴ I = `1/2 xx pi/2`

∴ I = `pi/4`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×