Advertisements
Advertisements
Question
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Solution
Let I = `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Put x = a sin θ
∴ dx = a cos θ dθ
When x = 0, θ = 0 and when x = a, θ = `pi/2`
∴ I = `int_0^(pi/2) ("a"costheta "d"theta)/("a"sintheta + sqrt("a"^2 - "a"^2 sin^2 theta))`
= `int_0^(pi/2) ("a"costheta"d"theta)/("a"sintheta + "a"sqrt(1 - sin^2 theta))`
`int_0^(pi/2) (cos theta)/(sin theta + sqrt(cos^2theta)) "d"theta`
∴ I = `int_0^(pi/2) (costheta)/(sintheta + cos theta) "d"theta` .......(i)
∴ I = `int_0^(pi/2) (cos(pi/2 - theta))/(sin(pi/2 - theta) + cos(pi/2 - theta))` .......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
∴ I = `int_0^(pi/2) (sintheta)/(costheta + sintheta) "d"theta` .......(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) (costheta)/(sintheta + costheta) "d"theta+ int_0^(pi/2) (sin theta)/(cos theta + sin theta) "d"theta`
= `int_0^(pi/2) (cos theta + sin theta)/(sin theta + cos theta) "d"theta`
= `int_0^(pi/2) "d"theta - [theta]_0^(pi/2)`
= `pi/2 - 0`
∴ I = `1/2 xx pi/2`
∴ I = `pi/4`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.