Advertisements
Advertisements
Question
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Solution
Let I = `int_0^3 x^2 (3 - x)^(5/2) "d"x`
= `int_0^3(3 - x)^2[3 - (3 - x)]^(5/2) "d"x` ....`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^3(9 - 6x + x^2)x^(5/2) "d"x`
= `int_0^3(9x^(5/2) - 6x^(7/2) + x^(9/2)) "d"x`
= `9int_0^2 x^(5/2) "d"x - 6 int_0^3 x^(7/2)"d"x + int_0^3 x^(9/2) "d"x`
= `9[(x^(7/2))/(7/2)]_0^3 - 6[(x^(9/2))/(9/2)]_0^3 + [(x^(11/2))/(11/2)]_0^3`
= `18/7[(3)^(7/2) - 0] - 12/9[(3)^(9/2) - 0] + 2/1[(3)^(11/2) - 0]`
= `[18/7 - (12/9 xx3) + (2/11 xx 9)](3)^(7/2)`
= `((198 - 308 + 126)/77)(3)^(7/2)`
∴ I = `16/77(3)^(7/2)`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.