Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Solution
Let I = `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
= `int_0^(pi/4) ((sin^3x)/(cos^3x))/(2cos^2x) "d"x`
= `1/2int_0^(pi/4) (sin^2x)/(cos^5x) "d"x`
= `1/2 int_0^(pi/4) ((1 - cos^2x)sinx)/(cos^5x) "dx`
Put cos x = t
∴ − sin x dx = dt
∴ sin x dx = − dt
When x = 0, t =1 and when x = `pi/4`, t = `1/sqrt(2)`
∴ I = `1/2 int_1^(1/sqrt2) (-(1 - "t"^2))/"t"^5 "dt"`
= `1/2 int_1^(1/sqrt(2)) ("t"^2 - 1)/"t"^5 "dt"`
= `1/2 int_1^(1/sqrt(2)) ("t"^(-3) - "t"^(-5)) "dt"`
= `1/2 int_1^(1/sqrt(2)) "t"^(-3) "dt" - 1/2 int_1^(1/sqrt(2)) "t"^(-5) "dt"`
= `1/2[("t"^(-2))/(-2)]_1^(1/sqrt(2)) - 1/2[("t"^-4)/(-4)]_1^(1/sqrt(2))`
= `-1/4[1/("t"^2)]_1^(1/sqrt(2)) + 1/8[1/("t"^4)]_1^(1/sqrt(2))`
= `-1/4(1/(1/2)- 1) + 1/8(1/(1/4) - 1)`
= `-1/4 + 3/8`
∴ I = `1/8`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`