Advertisements
Advertisements
Question
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Solution
Let I = `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
∴ I = `int_(-1)^1 1/(9 - x^2) "d"x + int_(-1)^1 x^3/(9 - x^2) "d"x`
= I1 + I2 ...(say) ......(i)
Let `"f"(x) = 1/(9 - x^2)`
∴ f(−x) = `1/(9 - (- x)^2`
= `1/(9 - x^2)`
= f(x)
∴ f(x) is an even function.
∴ I1 = `int_(-1)^1 1/(9 - x^2) "d"x`
= `2 int_0^1 1/(9 - x^2) "d"x`
= `2 int_0^1 1/(3^2 - x^2) "d"x`
= `2[1/(2 xx 3)* log|(3 + x)/(3 - x)|]_0^1`
= `1/3[log(4/2) - log(1)]`
∴ I1 = `1/3 log 2`
Let g(x) = `x^3/(9 - x^2)`
∴ g(−x) = `(-x)^3/(9 - (- x)^2`
= `(-x^3)/(9 - x^2)`
= − g(x)
∴ g (x) is an odd function.
∴ I2 = `int_(-1)^1 x^3/(9 - x^2) "d"x` = 0
From (i), we get
I = I1 + I2
∴ I = `1/3 log 2 + 0`
∴ I = `1/3 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.