Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Solution
`int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x = [log|1 + sin^2x|]_0^(pi/2)` .......`[∵ int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
= `log |1 + sin^2(pi/2)| - log|1 + sin^2 0|`
= log |1 + 1| – log 1
= log 2 – 0
= log 2
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate `int_(π/6)^(π/3) cos^2x dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`