English

Evaluate: ∫38(1-x)2x2+(11-x)2 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`

Sum

Solution

Let I = `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`   .......(i)

= `int_3^8 ([11 - (1 - x)]^2)/((11 - x)^2 + [11 - (11 - x)]2)  "d"x`      ........`[∵ int_"a"^"b" "f"(x)"d"x = int_"a"^"b" "f"("a" + "b" - x)"d"x]`

∴ I = `int_3^8 x^2/((11 - x)^2 + x^2)  "d"x` .......(ii)

Adding (i) and (ii), we get

2I = `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x + int_3^8 x^2/((11 - x)^2 + x^2)  "d"x`

= `int_3^8  ((11 - x)^2 + x^2)/(x^2 + (11 - x)^2)  "d"x`

∴ 2I = `int_3^8 1. "d"x`

∴ I= `1/2[x]_3^8`

∴ I = `1/2(8 -3)`

∴ I =`5/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(pi/2) x sin x.dx`


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×