English

Evaluate: ∫0π4log(1+tanx) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`

Sum

Solution

Let I = `int_0^(pi/4) log(1 + tanx)  "d"x`  ......(i)

= `int_0^(pi/4) log[1 + tan(pi/4 - x)]  "d"x`  ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x]`

= `int_0^(pi/4) log(1 + (tan  pi/4 - tan x)/(1 + tan  pi/4 * tanx)) "d"x `

= `int_0^(pi/4) log (1 + (1 - tan x)/(1 + tan x)) "d"x`

= `int_0^(pi/4) log ((1 + tanx + 1 - tan x)/(1 + tan x))  "d"x`

= `int_0^(pi/4) log(2/(1 + tan x)) "d"x`

= `int_0^(pi/4)[log2 - log(1 + tanx)]  "d"x`

= `log 2 int_0^(pi/4) 1* "d"x - int_0^(pi/4) log(1 + tanx)  "d"x`

∴ I = `log 2[x]_0^(pi/4) - "I"`   ......[From (i)]

∴ 2I = `log 2(pi/4 - 0)`

∴ I = `pi/8 log 2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×