English

Evaluate: d∫0π2cos3x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/2) cos^3x  "d"x`

Sum

Solution

`int_0^(pi/2) cos^3x  "d"x = int_0^(pi/2)((cos3x + 3cosx)/4)  "d"x`

= `1/4[int_0^(pi/2) cos x  "d"x + 3int_0^(pi/2)cos x  "d"x]`

= `1/4[[(sin3x)/3]_0^(pi/2) + 3[sin x]_0^(pi/2)]`

= `1/4[1/3(sin  (3pi)/2 - sin 0) + 3(sin  pi/2  - sin 0)]`

= `1/4[1/3 (-1 - 0) + 3(1 - 0)]`

= `1/4((-1)/3 + 3)`

= `1/4(8/3)`

= `2/3`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers I

RELATED QUESTIONS

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×